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A one-to-one correspondence between the nine Cayley-Klein geometries and the 
so-called kincmatic groups is presented. As is well known, the kinematic groups 
are related to each other through group contraction. The pattern of contraction is 
explained by relating each kinematic group to a specific Cayley-Klein geometry. 
The very meaning of group contraction is deeply rooted in the relationship 
between the nine geometries. Lie algebras of those geometries are explicitly 
constructed. 

1. INTRODUCTION 

Group theory is a mathematical tool in physics that not only expresses 
invariance, but also acts as "superlaws" determining the possible form of 
physical laws yet unknown (Bacry and Levy-Leblond, 1968). Starting from 
very general physical principles, one is able to classify all possible kine- 
matics, compatible with a relativity principle dictated by very general 
assumptions. 

On the other hand, looking at the scheme of contractions of the 
kinematic groups, one can realize that there exist groups--some so-called 
relative-time groups, i.e., the de Sitter and Poincar6 and other absolute-time 
groups such as Newton-Hooke  and Gali le i-- that  can be related to each 
other through the process of "group contraction" which gives a new 
meaning to each group. 

Thus it is well known that the Galilei group is a contraction of the 
Poincar~ group, but also is a contraction of the Newton-Hooke  groups, 
providing each group with a very rich structure. 
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One can ask the reason for the relationship existing between the 
kinematic groups. 

In this paper we study the Lie algebras of the nine plane Cayley-Klein 
geometries (Yaglom, 1979) and their relations to each other through group 
contraction. This gives the real foundations of this subject. 

We reinterpret the relationship among the kinematic groups, looking at 
it as a geometrical relation between the underlying plane Cayley-Klein 
geometries. 

The organization of this paper is as follows: In Section 2 a brief 
summary of the nine Cayley-Klein geometries is presented. Also a construc- 
tion of the Lie algebras and the corresponding group contractions of 
geometries are given. In Section 3 the unidimensional kinematic groups and 
the related contractions are studied; and finally in Section 4 the principal 
conclusions of this work are stated. 

2. THE NINE CAYLEY-KLEIN GEOMETRIES  

In accordance with the Erlangen Program (Klein, 1974), due to Felix 
Klein, each geometry is associated with a group of transformations, and 
hence there are as many geometries as groups of transformations. 

Associated with the group of transformations that in physics guaran- 
tees the invariance of many mechanical systems, the Galilei group, is the 
so-called Galilean geometry that, as has been pointed, out by Yaglom, " in  
spite of its relative simplicity, confronts the uninitiated reader with many 
surprising results." 

We define all the plane geometries that were first introduced by Klein 
in 1871. 

Following Cayley and Klein, we distingish three fundamentally differ- 
ent geometries on a fine, depending on the way of measuring length: 
Euclidean geometry, elliptic geometry, and hyperbolic geometry. 

Just as there are three ways of measuring length that give rise to three 
geometries on a line, so there are three ways of measuring angles that gives 

Table I. The Nine Cayley-Klein Geometries. 

Measure of Measure of lengths 
angles Elliptic Parabolic Hyperbolic 

Elliptic Elliptic Euclidean Hyperbolic 
Parabolic co-Euclidean Galilean co-Minkowski 
Hyperbolic co-hyperbolic Minkowski Doubly 

hyperbolic 
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rise to three geometries in a pencil of lines. Then, the Cayley-Klein scheme 
yields nine plane geometries. 

There is a simple method to obtain from each geometry a new one. All 
we need to do is to call each point a line and each line a point, and, of 
course, call the distance between points the angle between lines, and call the 
angle between lines the distance between points; that is, to use the duality 
transformation. Thus, the elliptic, Galilean, and doubly hyperbolic geometry 
are duals to themselves. Euclidean, Minkowskian, and hyperbolic geome- 
tries possess their own dual geometries or co-geometries: co-Euclidean, 
co-Minkowski, and co-hyperbolic geometries. 

An analytical study of the nine geometries can be made. As is well 
known, the points of the Euclidean plane can be identified with the complex 
numbers associated with each point; it is possible to generalize this study, 
which at first glance will be valid for elliptic, Euclidean, and hyperbolic 
geometries, by considering, in addition to complex numbers, others: the 
duals and double numbers. 

Thus we can associate the complex numbers with points of the geome- 
tries with elliptic angular metric, the dual numbers with points of the 
geometries with parabolic angular metric, and the double numbers with the 
points with hyperbolic angular metric. 

To discover the Lie algebra of each geometry it is useful to know the 
group of motions of each geometry. 

The analytical expressions of the isometries are as follows: If the metric 
of distances is elliptic 

z '=  p z + q  [ p/~+ qq__l ~ 0 (1) 
qz - p '  

if the metric is parabolic 

z '=  pz + q, IPPq ~ 0 (2) 

and finally if the metric is hyperbolic 

z '=  p z + q  i p p _ q ~ O  (3) 
q z + p '  

where p and q are complex, duals, or double numbers that verify the 
conditions (1), (2), and (3). 

A detailed study of those geometries can be found in Yaglom (1979). 

2.1. The Lie Algebras. Now, knowing the structure of the group of 
motions of each geometry, we find the associated Lie algebras, using the 
standard method. 
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A quite well-known process in physics, the contraction of groups, 
relates those nine geometries among them in a very clear way that we 
explain in the following section. 

We show the results obtained for each geometry, but before grouping 
the results, we examine one of the cases, the hyperbolic geometry, to 
demonstrate a particular case. The method is similar for the rest of the 
geometries. For the hyperbolic geometry we know beforehand the distance 
between two given points z and z I, the motions, and the straight lines: 

tanh2dz.z, = (z - z , ) ( g -  g,) distance: 2 (1- zz,) 

motions: z ' =  pz + q z ~ C, qz+p' Ip/V- q~ = 0 

lines" Az~+ Bz - J ~ +  A = 0, Re A -- 0 

We want to study the group of motions and find its Lie algebra. 
First of all, what is the law of the group? 

Z - . .  ~ - -  
p z + q  ~ q z ~ - p ]  ( p ' p + q ' q ) z + p ' q + p q '  

71z + p q , ( P z + q z + ff l + p, ( 71' p + ~t ff" ) z + ff p' + ~f q 

The parameters p and q are underdetermined because we can always 
change the choice of parameters to ~p  and ?~q with ~ real. 

Then 

P " =  P'P + q'?l 

q,, = p'q + ffq' 

is the law of the group. 
Through the association 

( p , q ) - - - , ( P  q p q)  with [pf f -  q~/] = 1 

the law of the group is translated to the product of matrices. 
Now we select a few kinds of transformations which generate the 

groups. We call the transformations which do not move the point z0, 
rotations around z o. On the other hand, F being a straight line which goes 
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through z 0, we call the transformations which leave F invariant translations 
along the line F. 

We study the translations along the line I" and the rotations. If, for 
instance, we choose z 0 = 0, then the rotations take the form 

(0 0) Rp = p , IPl = 1, p = exp( ia /2 )  

and the translations, we can easily prove, are of the form 

(1 q)  i i _ q E / l = l ,  q = r e x p ( i a / 2 )  T~= ~ 1 '  

The translations T r and Tre,O/2 move along lines which form an angle a 
between them. 

Notice that (Tq) is not a subgroup, while (Rp) generates a uniparamet- 
ric subgroup of parameter a. 

Furthermore every motion is a product of a T r and a Rp. Indeed, 

TrRp= ? 0 = rp ff 

and it is sufficient to choose rff= q. 
To find the Lie algebra, we choose three uniparametric subgroups: Rp 

and the suitable translations to two fixed directions: 

reT) 
r e -  ia/2 

If we choose for convenience a / 2  = 0 and a / 2  = 7r/2, then we obtain 
the translations in two orthogonal directions: 

Every motion, as one can prove, is a product of three of these. We also 
have to find the canonical parameters of these uniparametric subgroups 
(Levy-Leblond, 1979). 

For the rotations p = e ~a/2, where a is canonical. Then 

R (e 7 0 
" e - ict/2 ) 
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For the translations, the composition law of the subgroup is the 
following: 

(' ';/(' r)=rrr'-'-' ,'-,-r') 
r' r 1 ~ r ' + r  rr '+l  

r + r '  
1 

1 + rr' 
r + r '  

1 
1 + r r '  

where we can see that the parameter  r is not canonical but the change 
r = t anh(d /2 )  makes d canonical in such a way that 

1 
T I =  t a n h ( d / 2 )  

7"2 = - i t a n h ( d / 2 )  

t a n h ( d / 2 )  ] and 
1 / 

i tanh(l d /2  ) ) 

We write d/2  so that the distance traveled is the group parameter.  
Then the generators of these uniparametric subgroups are 

0) (0 
K =  - i / 2  ' H =  1 /2  0 ' 

P = - i /2  0 

and 

where K is the infinitesimal generator of the rotations and H and P are the 
infinitesimal generators suitable to the translations. 

When we know the generators, it is easy to get the Lie brackets of the 
Lie algebra of the group of motions, in this case of the hyperbolic geometry 

[K, H] = P 

[K, P I = - H  

[H, PI=-K 

We show the Lie algebras of the nine geometries in Table II. 
We must make a point: according to the method we have developed to 

obtain the Lie algebra of each geometry, we can see that, essentially, there is 
one geometry, because we can call the generators of the algebra as we wish, 
without any previous idea about each of the symbols. Nevertheless, from a 
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Table I!. Lie Algebras of the Geometries 

Elliptic Euclidean Hyperbolic 

[K. HI= P [K,H]= P [K H]= P 
[K, P I = - H  [K,P]=-H [ K P ] = - H  
[H, P ] =  K [H,P]=O [ H P ] =  - K 

Co-Euclidean Galilean Co-Minkowski 

[K, tlI= P [K, HI= P [K,H]= P 
[K, P I = 0  [ K , P ] = 0  [ K , P ] = 0  
[H,P]=K [ H , P ] = 0  [H,P]=-K 

Co-Hyperbolic Minkowski Doubly hyperbolic 

[X, n l = P  [K, H I = e  [K, H I = P  
[K, P I = H  [K, PI=H [ g , e ] =  H 
[ H , P ] =  K [H, P ] =  0 [ H , P ] = -  K 

physical point of view, there are different theories because we have a 
concrete interpretation of P and H associated with concrete physical trans- 
formations; P usually acts as the generator of the space translations while H 
acts as the generator of the time translations. 

Thus, some of the previous geometries lead us to several cases, different 
from a physical point of view, but equivalent from a geometrical point of 
view. 

Table III gives a complete diagram where one has to think of P, H, and 
K as generators of transformations which are not equivalent physically. 

The data in Table III are those for the Lie brackets [K, HI, [K, P], and 
[H, P] in that order. In the trivial geometry all the Lie brackets vanish. 

Table III. Lie Algebras for the Physically Amplified Geometries. 

Elliptic Euclidean Hyperbolic 

P P P 
- H  - H  - H  

K 0 - K  
Co-Euclidean co-Euclidean' Galilean Carroll Translations co-Minkowski co-Minkowsk 

P 0 P 0 0 P 0 
0 - H  0 H 0 0 - H  
K K 0 0 - K  - K  - K  

Co-hyperbolic Minkowski Doubly hyperbolic 

P P P 
H H H 
K 0 - K  
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Fig. 1. 

2.2. Contractions of the Geometries. Group contraction is a mathe- 
matical process first used by InOnu and Wigner (1953) to study the 
relationship between relativistic and classical mechanics (the classical limit 
of relativity). 

From an intuitive point of view, we can see that Galilean geometry is 
an intermediate case of the Euclidean and Minkowskian geometries. 

Let Figure 1 be a Euclidean circle. If we consider the unit of measure in 
the y axis much smaller than the unit of measure in the x axis and at the 
same time only consider small rotations, then that would be expressed 
graphically by drawing a small slice around the x a ~ s  (Figure 2). If we 
stretch it as though it were extensible, we have Figure 3 which is a Galilean 
circle. 

We can carry out the same process with the "circles" of the 
Minkowskian geometry. 

Fig. 2. 
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Fig. 3. 

We are going to study the contractions of the geometries from a more 
analytical point of view, according to the theory of Lie algebras. 

Essentially, we construct a one-parameter  family of automorphisms of 
the algebra which is singular at a certain value of the parameter.  

The general contraction will be 

P ~ a P  

H--" BH 

K ~ , K  

with a, fl, and y depending on a parameter  e so that aft7 ~ 0 at a value for 
the parameter  we will take to be e = O. 

The commutators  of the Lie algebra must admit a limit for e ~ 0 and 
that limit must be finite. 

Basically there are four types of contractions: 
(i) Type PH: 

P ~ e P ,  H ~ e H ,  K ~ K  

is called a spatial contraction and produces certain contracted geometries 
which have a local relationship to the ones we have contracted. 

(ii) Type HK: 

P ~ P ,  H ~ e H ,  K ~ e K  

is the contraction of direction 1 to an angle and through it we get the 
Carroll geometry from the geometry of Minkowski. 
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Table IV. Contractions of the Cayley-Klein Geomctries 

Contraction El Eu H Co-E G Co-M 

Elliptic Euclidean Hyperbolic Co-Euclidean Galilean Co-Minkowski 

P P P P P P 
PH - H  - H  - H  0 0 0 

0 0 0 0 0 0 

gives Eu Eu Eu G G G 

0 0 0 0 0 0 
KH - H  - H  - H  0 0 0 

K 0 - K K 0 - K 

gives co-E' C co-M' T St T 

P P P P P P 

KP 0 0 0 0 0 0 
K 0 - K  K 0 - K  

gives co-E G co-M c o -  E G co-M 

(iii) Type PK:  

P --* eP, H--> H,  K ~ e K  

is the contraction of direction 2 to an angle and through it we can pass from 
the geometry of Minkowski to that of Galileo. 

(iv) Type P H K :  

P ~ eP, H --* e l l ,  K --o eK 

is the total contraction and it takes each geometry to the "static" one, the 
geometry where all Lie brackets vanish. 

We show in Table IV the contractions that each geometry has suffered 
and the relationship between them. The interesting point here is that each 
geometry admits, besides its own interpretation, other approximate interpre- 
tations by virtue of the concept of group contraction. 

When we know all the contractions of the different geometries, we can 
build a lattice of contractions where we can see the new approximate 
interpretation of each geometry (Figure 4). 

3. KINEMATIC GROUPS 

We summarize the results obtained by Bacry and Levy-Leblond con- 
cerning the possible structures of groups of transformations which relate 
two inertial systems under quite general physical hypotheses. 
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Co-H M D-H Co-E'  C T Co-M'  
Doubly 

Co-Hyperbolic Minkowski Hyperbolic Co-Euclidean' Carroll Translations Co-Minkows 

P P P 0 0 0 0 
II H H H H 0 H 

0 0 0 0 0 0 0 
M M M C C St C 

0 0 0 0 0 0 0 
H H H H H 0 H 
K 0 - K  - K  0 - K  K 

co-M' C co-E" co-E'  C T co-M'  

P P P 0 0 0 0 
0 0 0 0 0 0 0 
K 0 - K  - K  0 - K  K 

co-E G co-M T St T T 

S t  

c o - E  E l  c o - H  

C o - M  ~1" 

co- 

G I I Eu 

d-H 

M 

KH 
PH 

C 

Fig. 4. 
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There is an abstract principle of relativity (Levy-Leblond, 1976) which 
takes us to various "theories of relativity" depending on the different laws 
of composition of the transformation groups. 

Briefly, each " theory  of relativity" is formed according to a determined 
group structure of the changes of inertial systems of frame as a whole, 
groups which we call relativity or kinematic groups. 

Two well-known examples of concrete realizations of this principle are 
the Galileo and the Poincar~ groups, which represent, respectively, the 
classical mechanics and the relativistic one. 

We are interested in unidimensional kinematics, so we will suppose that 
our kinematic group is a connected Lie group of three parameters and that 
it is a physical requirement which expresses the supposed continuity of 
space-time. 

The group must be connected to exclude parity and time-reversal as 
automorphisms of the groups. 

To obtain the different realizations we use some techniques of Lie 
algebras. We will call H, P, and K the infinitesimal generators of time and 
space-translations and the rotation respectively. 

Knowing the results demonstrated in Bacry and Levy-Leblond (1968) 
and thinking of our unidimensional case, we find the classification of 
unidimensional kinematic groups shown in Table V. 

3.1. Contractions of the Kinematic Groups. All the kinematic groups we 
have seen before can be related through a process of approximation known 
as group contraction. 

For instance, the Gahleo group is obtained through a contraction of the 
Poincar~ group with P ~ eP and K ~ eK,  H remaining unaltered, replacing 
the Lie algebra, and considering the limit e --, 0 of the Lie brackets. 

The physical meaning is clear. As the factor e is attached to P and K, 
the contracted group describes a situation in which the speeds are small and 
the space-translation is small too. 

We can consider four kinds of physical contractions for any kinematic 
group. We will call them P K  contraction, K H  contraction, P H  contraction, 
and the general one, according to the generators which are contracted. 

Table V. Lie Algebras of the Urtidimensional Kinematic Groups. 

Relative-time groups Absolute-time groups 

dS § dS_ P P'+ P'_ C N+ N_ G G' St 

[P ,H]  K - K  0 K - K  0 K - K  0 K 0 
[K, H] P P P 0 0 0 P P P 0 0 
[K,P]  H H H H H H 0 0 0 0 0 
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It is possible to build a lattice of contractions with all the kinematic 
groups to see graphically what the relationship for contraction between one 
kinematic group and another is. 

We consider a cube where the direction x is the direction of the PK 
contraction, the direction y is the direction of the KH contraction and z that 
of the PH contraction. 

Then the scheme is shown in Figure 5. 

4. CONCLUDING REMARKS 

Amongst the possible subalgebras which admit all the kinematic groups 
are the ones we will call kinematic subalgebras, which regulate the unidi- 
mensional motions (generated by K )  and their spatial and temporal rela- 
tions (generated by P and H).  

In our case the same groups are already the same kinematic algebra 
because we have only considered unidimensional groups. 

If we compare the algebra of each kinematic group with that of the 
geometries of Cayley and Klein amplified physically we can give a geometri- 

S t  

N~ aS+ 

f 

J 
P 

Fig. 5. 

P K  



14 Sanjuan 

cal interpretation of each one of the different kinematic groups according to 
the different geometry they have associated. 

Having done so the association is the following: 

group geometry 

dS  + ~ doubly hyperbolic ( d H  ) 

d S _  - - - ,  co-Hyperbolic (co-H) 
P ~ Minkowski (M)  
! 

P + ~ co-Euclidean' (co-E') 
P'_ ~ co-Minkowski' (co-M') 

C ~ Carroll (C) 
N + ~ co-Minkowski (co-M) 
N_ ~ co-euclidean (co-E) 

~ Galilean (G) 
9'  ~ Translations (T)  
St  ---, static ( S t )  

We see that the elliptic, Euclidean, and hyperbolic geometries do not 
appear, because they have groups which do not satisfy the third hypothesis 
of Bacry and Levy-Leblond (1968), that is, groups whose inertial transfor- 
mations form a compact subgroup. 

When this association is made, we can compare the schemes of contrac- 
tions of the groups and geometries and we can see that they are equivalent. 
Thus we can conclude that the true reason for the scheme of contractions of 
the groups is hidden in the relations of contractions of the associated 
geometries. 

In short, we can state that the reason for maintaining that, for example, 
the Galilean group is an approximation, understood as a contraction, of the 
Poincar6 group is that the Galilean geometry is an approximation, under- 
stood also as a contraction, of the Minkowskian geometry; and likewise for 
all the other kinematic groups. 
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